Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC

نویسندگان

  • Daphne Haas-Kogan
  • Noga Shalev
  • Michelle Wong
  • Gordon Mills
  • Garret Yount
  • David Stokoe
چکیده

Glioblastomas are highly malignant tumors of the central nervous system that are resistant to radiation and chemotherapy [1]. We explored the role of the phosphatidylinositol (PI) 3-kinase signal transduction pathway in glioblastomas, as this pathway has been shown to inhibit apoptosis induced by cytokine withdrawal and the detachment of cells from the extracellular matrix [2]. Components of this pathway have been implicated in tumor development [3-6]. We show that glioblastoma cells, in contrast to primary human astrocytes, contain high endogenous protein kinase B (PKB/Akt) activity and high levels of PI 3,4,5-triphosphate (PI(3,4,5)P3) and PI(3,4)P2, the lipid products of PI 3-kinase. These glioblastoma cells express mutant forms of the putative 3' phospholipid phosphatase PTEN, also known as MMAC. Expression of wild-type PTEN derived from primary astrocytes, but not of mutant forms of PTEN, reduced the levels of 3' phosphoinositides and inhibited PKB/Akt activity. PTEN antagonized the activation of PKB/Akt by growth factors, by activated PI 3-kinase and by PI-dependent protein kinase-1 (PDK1), but did not antagonize the phospholipid-independent activation of PKB/Akt lacking the pleckstrin homology (PH) domain. These results suggest a role for PTEN in regulating the activity of the PI 3-kinase pathway in malignant human cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN.

Understanding the functional roles of the molecular alterations that are involved in the oncogenesis of prostate cancer, the second most frequent cause of cancer-related deaths among men in the United States is the focus of numerous investigations. To examine the possible significance of alterations associated with the tumor suppressor gene, MMAC/PTEN, in prostate carcinoma, the biological and ...

متن کامل

Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis.

The MMAC/PTEN tumor suppressor gene encodes for a phosphatase that recently has been shown to have phosphotidylinositol phosphatase activity, implicating its possible involvement in phosphatidylinositol 3'-kinase-mediated signaling. To investigate possible alterations in growth factor-mediated signal transduction, an adenovirus containing MMAC/PTEN, Ad-MMAC, previously shown to inhibit growth a...

متن کامل

Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN

PTEN is a tumor suppressor with sequence homology to protein tyrosine phosphatases and the cytoskeletal protein tensin. mPTEN-mutant mouse embryos display regions of increased proliferation. In contrast, mPTEN-deficient immortalized mouse embryonic fibroblasts exhibit decreased sensitivity to cell death in response to a number of apoptotic stimuli, accompanied by constitutively elevated activit...

متن کامل

Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway.

PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden's disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phospha...

متن کامل

High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice

BACKGROUND Germ-line and sporadic mutations in the tumor suppressor gene PTEN (also known as MMAC or TEP1), which encodes a dual-specificity phosphatase, cause a variety of cancers such as Cowden disease, glioblastoma, endometrial carcinoma and prostatic cancer. PTEN is widely expressed, and Cowden disease consistently affects various organ systems, suggesting that the PTEN protein must have an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998